An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints

نویسندگان

  • Pierre Bonami
  • Miguel A. Lejeune
چکیده

In this paper, we study extensions of the classical Markowitz’ mean-variance portfolio optimization model. First, we consider that the expected asset returns are stochastic by introducing a probabilistic constraint imposing that the expected return of the constructed portfolio must exceed a prescribed return level with a high confidence level. We study the deterministic equivalents of these models. In particular, we define under which types of probability distributions the deterministic equivalents are second-order cone programs, and give exact or approximate closed-form formulations. Second, we account for real-world trading constraints, such as the need to diversify the investments in a number of industrial sectors, the non-profitability of holding small positions and the constraint of buying stocks by lots, modeled with integer variables. To solve the resulting problems, we propose an exact solution approach in which the uncertainty in the estimate of the expected returns and the integer trading restrictions are simultaneously considered. The proposed algorithmic approach rests on a non-linear branch-and-bound algorithm which features two new branching rules. The first one is a static rule, called idiosyncratic risk branching, while the second one is dynamic and called portfolio risk branching. The proposed branching rules are implemented and tested using the open-source framework of the solver Bonmin. The comparison of the computational results obtained with standard MINLP solvers and with the proposed approach shows the effectiveness of this latter which permits to solve to optimality problems with up to 200 assets in a reasonable amount of time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Combined Stochastic Programming and Robust Optimization Approach for Location-Routing Problem and Solving it via Variable Neighborhood Search algorithm

The location-routing problem is one of the combined problems in the area of supply chain management that simultaneously make decisions related to location of depots and routing of the vehicles. In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve th...

متن کامل

Exact Solution Approach for Stochastic Portfolio Optimization with Trading Constraints

In this talk, we first present extensions of the classical mean-variance portfolio optimization model that account for the estimation risk and for trading requirements. We consider that the expected asset returns are stochastic by introducing a probabilistic constraint which imposes that the expected return of the constructed portfolio must exceed a prescribed return threshold with a high confi...

متن کامل

Solving Planning and Design Problems in the Process Industry Using Mixed Integer and Global Optimization

This contribution gives an overview on the state-of-the-art and recent advances in mixed integer optimization to solve planning and design problems in the process industry. In some case studies specific aspects are stressed and the typical difficulties of real world problems are addressed. Mixed integer linear optimization is widely used to solve supply chain planning problems. Some of the comp...

متن کامل

Mixed integer programming with a class of nonlinear convex constraints

We study solution approaches to a class of mixed-integer nonlinear programming problems that arise from recent developments in risk-averse stochastic optimization and contain second-order and p-order cone programming as special cases. We explore possible applications of some of the solution techniques that have been successfully used in mixed-integer conic programming and show how they can be g...

متن کامل

A two-stage stochastic mixed-integer program modelling and hybrid solution approach to portfolio selection problems

In this paper, we investigate a multi-period portfolio selection problem with a comprehensive set of real-world trading constraints as well as market random uncertainty in terms of asset prices. We formulate the problem into a two-stage stochastic mixed-integer program (SMIP) with recourse. The set of constraints is modelled as mixed-integer program, while a set of decision variables to rebalan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Operations Research

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2009